Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(10): 2192-2211, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37489084

RESUMO

In colorectal cancers, the tumor microenvironment plays a key role in prognosis and therapy efficacy. Patient-derived tumor organoids (PDTO) show enormous potential for preclinical testing; however, cultured tumor cells lose important characteristics, including the consensus molecular subtypes (CMS). To better reflect the cellular heterogeneity, we established the colorectal cancer organoid-stroma biobank of matched PDTOs and cancer-associated fibroblasts (CAF) from 30 patients. Context-specific phenotyping showed that xenotransplantation or coculture with CAFs improves the transcriptomic fidelity and instructs subtype-specific stromal gene expression. Furthermore, functional profiling in coculture exposed CMS4-specific therapeutic resistance to gefitinib and SN-38 and prognostic expression signatures. Chemogenomic library screening identified patient- and therapy-dependent mechanisms of stromal resistance including MET as a common target. Our results demonstrate that colorectal cancer phenotypes are encrypted in the cancer epithelium in a plastic fashion that strongly depends on the context. Consequently, CAFs are essential for a faithful representation of molecular subtypes and therapy responses ex vivo. SIGNIFICANCE: Systematic characterization of the organoid-stroma biobank provides a resource for context dependency in colorectal cancer. We demonstrate a colorectal cancer subtype memory of PDTOs that is independent of specific driver mutations. Our data underscore the importance of functional profiling in cocultures for improved preclinical testing and identification of stromal resistance mechanisms. This article is featured in Selected Articles from This Issue, p. 2109.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Bancos de Espécimes Biológicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Células Tumorais Cultivadas , Fibroblastos Associados a Câncer/metabolismo , Organoides/patologia , Microambiente Tumoral/genética
2.
Immunity ; 55(11): 2059-2073.e8, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351375

RESUMO

T memory stem cells (TSCM) display increased self-renewal and prolonged survival capabilities, thus preventing T cell exhaustion and promoting effective anti-tumor T cell responses. TSCM cells can be expanded by Urolithin A (UA), which is produced by the commensal gut microbiome from foods rich in ellagitannins and is known to improve mitochondrial health. Oral UA administration to tumor-bearing mice conferred strong anti-tumor CD8+ T cell immunity, whereas ex vivo UA pre-treated T cells displayed improved anti-tumor function upon adoptive cell transfer. UA-induced TSCM formation depended on Pink1-mediated mitophagy triggering cytosolic release of the mitochondrial phosphatase Pgam5. Cytosolic Pgam5 dephosphorylated ß-catenin, which drove Wnt signaling and compensatory mitochondrial biogenesis. Collectively, we unravel a critical signaling pathway linking mitophagy to TSCM formation and suggest that the well-tolerated metabolic compound UA represents an attractive option to improve immune therapy.


Assuntos
Cumarínicos , Mitofagia , Camundongos , Animais , Cumarínicos/farmacologia , Via de Sinalização Wnt , Células-Tronco , Memória Imunológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...